US 2005/0005261 Al

[0187] A meta-implementation layer of the present inven-
tion may include accessors that access an implementation of
an implementation layer or virtual implementations that are
the implementation. The accessors may be meta-implemen-
tation accessors, language-specific implementation acces-
sors, database specific accessors, and other types of imple-
mentation accessors. The meta-implementation layer may be
implemented in any language including yet-to-be developed
programming languages. The meta-implementation can
access any software implementation including yet-to-be
developed software implementations. The meta-implemen-
tation layer is mapped to a metamodel or other descriptor.

[0188] Rather than requiring an object-oriented class,
compiled from a source code written in a specific language,
the meta-implementation layer allows a meta-implementa-
tion provider to implement the functionality in any way to
produce functionality desirable to the system. It makes no
difference to the meta-implementation layer how the imple-
mentation occurs, as long one meta-implementation acces-
sor exists to access the true implementation for each descrip-
tor in the metamodel.

[0189] In a C++ meta-implementation of the present
invention there may be a language-specific implementation
model accessor that access a class. The language-specific
implementation model accessor may have a one-to-one
association relationship with a metamodel, and a zero-to-
many association relationships with attribute accessor,
operation accessors, signal accessors, constructor accessors
and destructor accessors. The class may have a similar
one-to-many association relationships with a class attribute,
a class method, class event methods, class constructors, and
class destructors. The attribute accessors use the class
attribute, the operation accessors use the class method, the
signal accessors use the class event methods, the constructor
accessors use the class construction, and the destructor
accessors use the class destructors.

[0190] For example, one meta-implementation provider
may write C++ source code for each attribute descriptor,
operator, signal, model, and relationship described in the
metamodel. Then the meta-implementation provider would
generate more C++ source code to create an accessor to each
feature on each C++ class.

[0191] For example, a rubber ball class with attributes for
bouncy_factor and color and an operation named bounce
would be generated as a class with a two member variables,
BouncyFactor (one-to-one association relationship, Integer)
and Color (one-to-one association relationship, String), and
one function, public void bounce(). Three more classes are
created as accessors to these features. RubberBallBouncy-
FactorAccessor would implement AttributeAccessor and
provide access to the bouncy factor attribute of the Rubber-
Ball class. RubberBallBouncyColorAccessor would imple-
ment AttributeAccessor and provide access to the color
attribute of the RubberBall class. RubberBallBounceAction
would implement OperationAccessor and execute the
bounce function of the RubberBall class. A RubberBallCon-
structorAccessor would exist to create new instances of
RubberBall. The true instances would be wrapped in a
RubberBalllnstance in order to preserve the connection to
the accessor which created it.

[0192] A different meta-implementation provider may
generate database tables and store each instance of a meta-

Jan. 6, 2005

model as a record in that table. A database implementation
model accessor accesses rows in a database table. Each
database implementation model accessor has a zero-to-many
association relationship with a metamodel. The database
implementation model accessor aggregates attribute acces-
sors, operation accessors, signal accessors, constructor
accessors, and destructor accessors which are associated
with the metamodel’s attribute descriptors, operation
descriptors, signal descriptors, constructor descriptors, and
destructor descriptors respectively. Each database model
accessor instance is a row in a database table. The attribute
accessors use the table column, the operation accessors use
the stored procedure, the signal accessors use the database
triggers or message queues, the constructor accessors use a
stored procedure or insert statement, and the destructor
accessors use a stored procedure or delete statement.

[0193] To continue the example, the aggregation relation-
ship attributes of a metamodel are stored as columns in the
table. Association relationship attributes are stored as for-
eign key references to records in tables for the associated
metamodel. Operations are implemented as stored proce-
dures and interaction relationships would be stored as pro-
cess entity models in cross-reference tables. A generalized
attribute accessor exists which would perform an SQL
update statement whenever an attribute accessor requires a
change. The attribute accessor performs an SQL select to
retrieve the value for the attribute. The meta-implementation
vendor may also implement various caching and optimiza-
tion techniques to reduce unnecessary database access calls.

[0194] A third type of meta-implementation simply acts as
a wrapper around a meta-implementation. Due to the limited
number of meta-implementation interfaces, it is possible to
simply create one wrapper meta-implementation for each
interface to add new functionality to all interfaces. Adding
new functionality to all aspects of a program is sometimes
referred to as aspect programming. New aspects (such as
logging all attribute value changes) can be added to a system
dynamically at runtime.

[0195] For example, to create a log entry every time an
attribute value is changed, a wrapper may be created for the
attribute accessor interface that first writes the log entry then
calls the normal attribute access method on the true meta-
implementation. All implementations of attribute accessor
can be wrapped with this attribute accessor wrapper to add
this type of functionality.

[0196] Other meta-implementation providers may use
LDAP storage, random access files, procedural languages,
structured languages, a virtual implementation, or in some
yet-to-be developed technology. Meta-implementation pro-
viders may use a plain object-oriented implementation, a
CORBA implementation, or an Enterprise Java Beans (EJB)
implementation approach. The provider may choose to
implement the layer using C++ or may opt to use the added
facilities made available as part of NET. A meta-implemen-
tation provider may also implement accessors to all of these
technologies plus the database and object-oriented technolo-
gies described above. By providing accessors to a variety of
implementation types, systems will be able to integrate from
a variety of sources and distribute the application to take
advantage of the particular advantages of each platform.

[0197] A meta-implementation layer of the present inven-
tion defines one implementation interface for each descriptor

